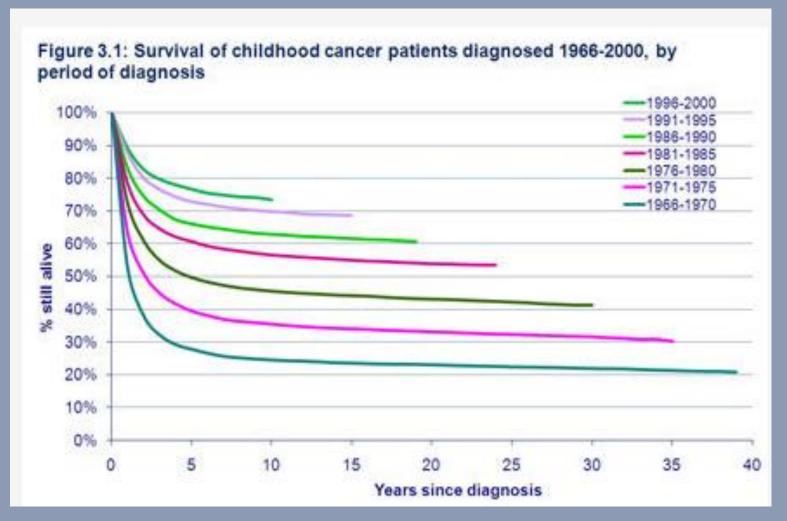

Evaluation of ovarian tissue cryopreservation and transplantation based on Edinburgh Selection Criteria

> Professor W Hamish Wallace Professor of Pediatric Oncology, Royal Hospital for Sick Children, University of Edinburgh Scotland, UK

The 53rd Annual Meeting of the Japan Society of Clinical Oncology October 29-31, 2015. Kyoto International Conference Center


No conflicts of interest to declare

お招きいただきありがとうございます O maneki itadaki arigatōgozaimasu

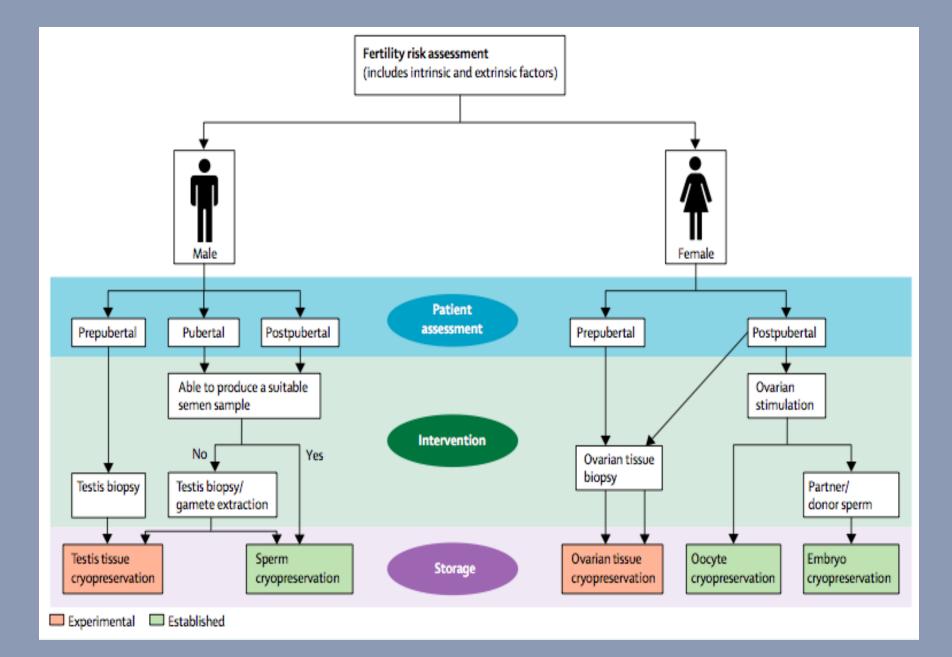
Improved Five Year Survival (1966-2000)

Panel 1: Intrinsic and extrinsic factors for fertility preservation strategies in children and young adults⁹

Intrinsic factors

- Health status of patient
- Psychosocial factors
- Consent (patient or parent)
- Assessment of pubertal status
- Assessment of ovarian reserve (female patients)

Extrinsic factors


- Risk of predicted treatment (high, medium, low, or uncertain risk)
- Time available
- Expertise and technical options available

Anderson RA...Wallace WH. Lancet Diabetes Endocrinol. 2015

Risk of infertility

Low risk (<20%)				
 Acute lymphoblastic leukaemia Soft-tissue sarcoma: stage 1 Retinoblastoma 	 Wilms Tumour Germ cell tumours (no radiotherapy) Hodgkin lymphoma 			
Medium risk (20-80%)				
 Acute myeloblastic leukaemia Hepatoblastoma Osteosarcoma Ewing's sarcoma: non metastatic Soft tissue sarcoma 	 Neuroblastoma Non- Hodgkins lymphoma Hodgkin lymphoma (Alkylating agents) 			
High risk (>80%)				
 Total body irradiation Localised radiotherapy (pelvic/testis) Chemotherapy for BMT 	 Hodgkin lymphoma (Pelvic RT) Soft tissue sarcoma: stage IV (metastatic) Ewing's sarcoma: metastatic 			

Wallace WH et al, Lancet Oncology, 2005

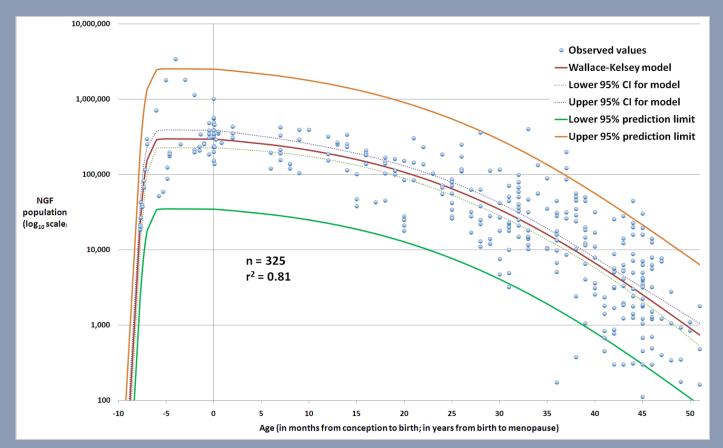
Anderson RA...Wallace WH. Lancet Diabetes Endocrinol. 2015

Key features of the 3 options for fertility preservation for women

Technique	Main advantages	Main disadvantages		
Embryo cryopreservation	Established technique	May incur delay		
		Sperm required: partner or donor		
		Fixed potential for future fertility		
Oocyte cryopreservation	Does not require sperm	May incur delay		
		Not appropriate for pre-pubertal child		
		Limited numbers of eggs can be stored in		
		time available		
Ovarian tissue	Minimal delay	Requires surgical procedure		
cryopreservation	No lower age limit	Malignant contamination in some conditions		
	Allows for spontaneous and	precludes reimplantation		
	repeated conception	In vitro follicle growth unlikely to be		
	Greater allowance for future	available for several years.		
	developments			

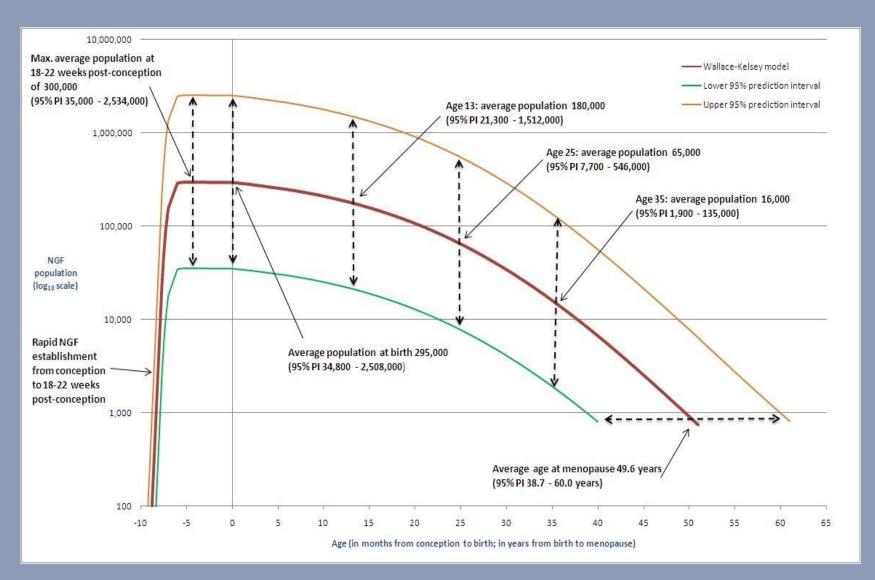
Ovarian tissue cryopreservation: World-wide experience

At least 60 pregnancies worldwide after othotopic reimplantation of frozenthawed ovarian cortex Success rate is unclear as the denominator is unknown No pregnancies reported following the reimplantation of ovarian tissue harvested pre-pubertally Young children are potentially ideal candidates

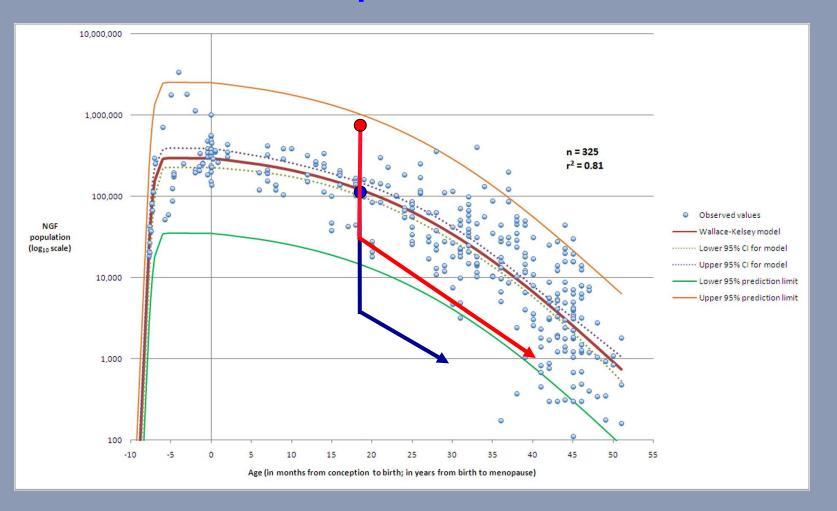

Donnez, J. & Dolmans, M.-M. Nat. Rev. Endocrinol. 9, 735–749 (2013)

Ovarian Reserve?

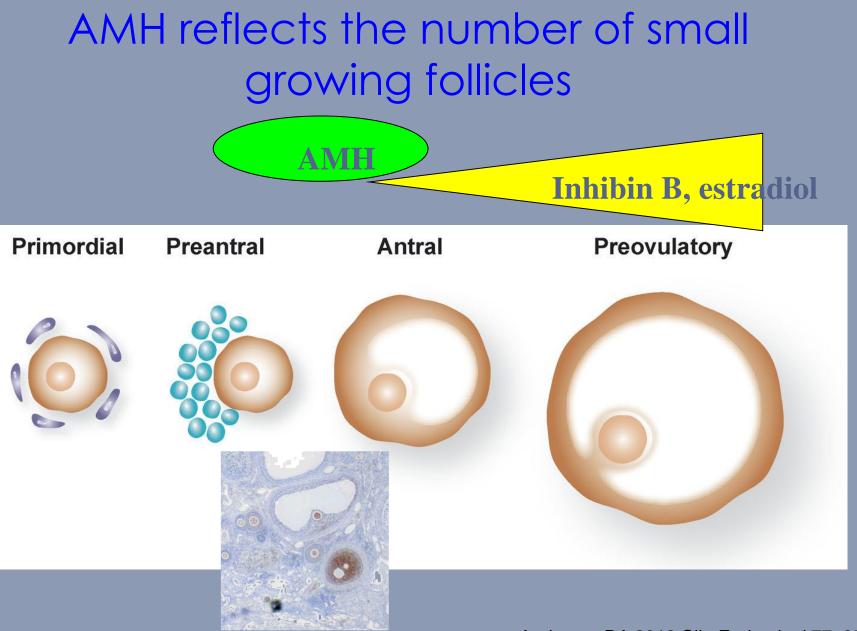
The Wallace-Kelsey Model


(Five parameter asymmetric double-Gaussian cumulative curve)

 $log_{10}(y) = \frac{a}{4} \left[1 + \operatorname{Erf}\left(\frac{x+b+\frac{c}{2}}{d\sqrt{2}}\right) \right] \left[1 - \operatorname{Erf}\left(\frac{x+b-\frac{c}{2}}{e\sqrt{2}}\right) \right]$


Wallace & Kelsey (2010) PloS ONE

Ovarian reserve: Conception to Menopause



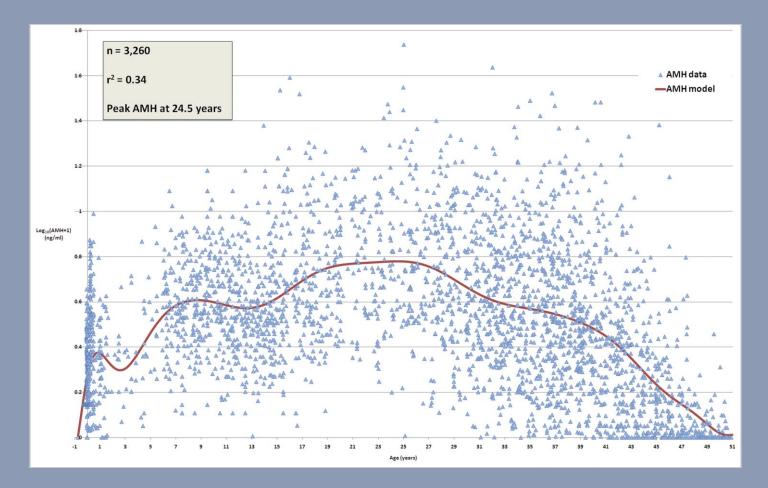
Wallace & Kelsey (2010) PloS ONE

Current model of follicular depletion

Wallace and Kelsey 2010 PLoS One 5; e8772

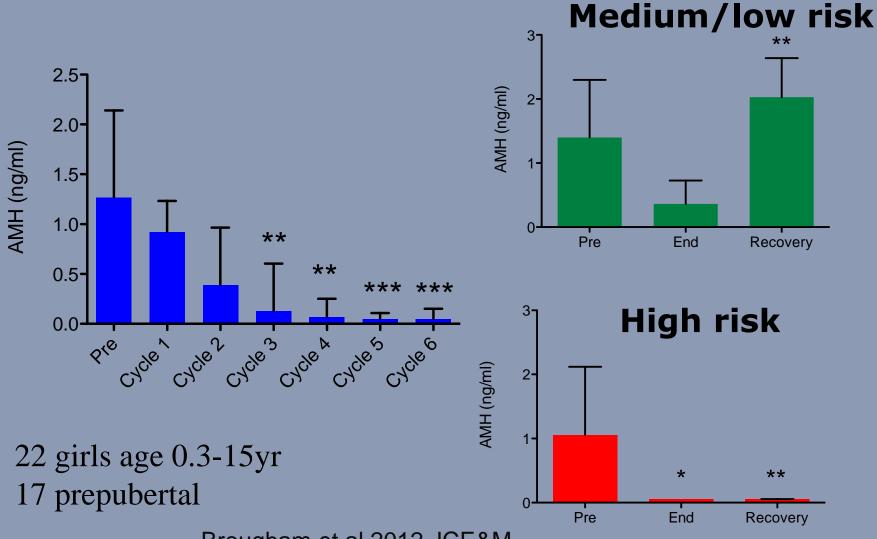
Prediction of Ovarian Reserve (AMH)

Anti Mullerian Hormone (AMH) is an important product of the adult ovary, produced by the granulosa cells of small growing follicles

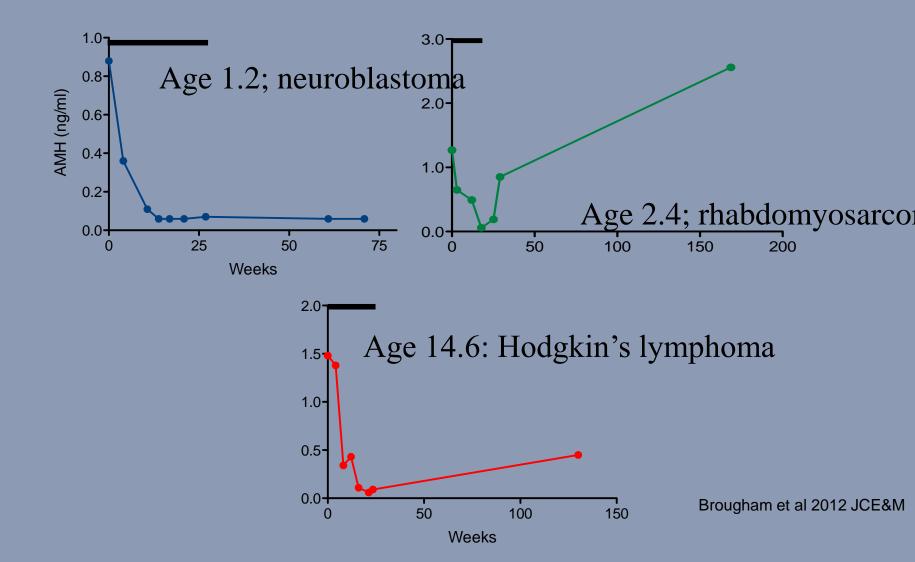

AMH has little variation across and between menstrual cycles

AMH is the best currently available marker of the number of small-growing follicles in the ovary

But there was no validated reference model for AMH available


Anderson, Nelson, Wallace (2011) Maturitas

A validated model of serum anti-Mullerian hormone (AMH) from conception to menopause


Kelsey et al. PLoS ONE 2011

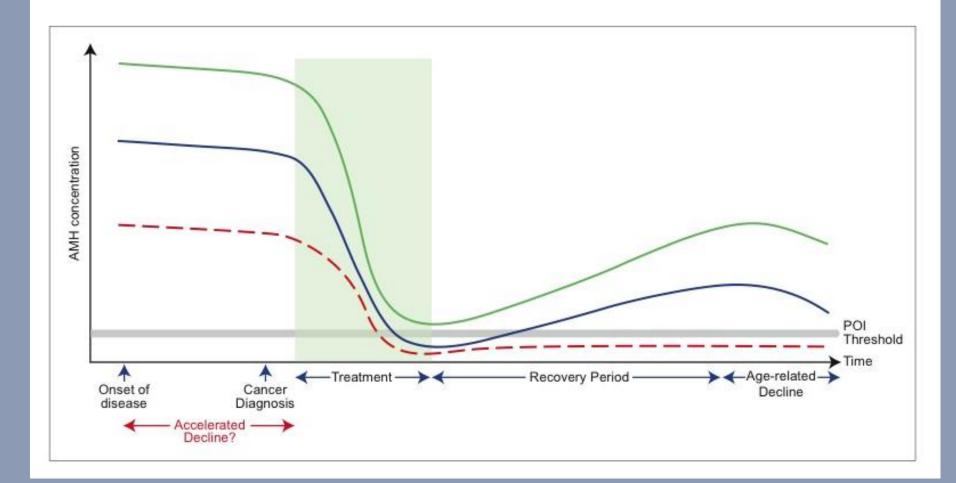
AMH in childhood cancer

Brougham et al 2012 JCE&M

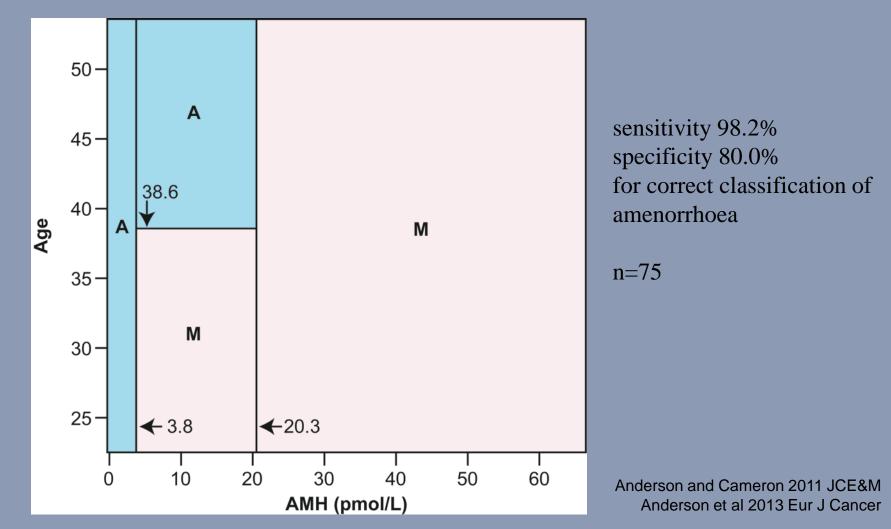
AMH in 3 girls with cancer

Summary

AMH is detectable before puberty


AMH falls rapidly during cancer treatment in both pre-pubertal and pubertal girls

AMH levels recover in those patients at low/medium risk of gonadotoxicity


AMH fails to recover in those at high risk. This could be indicative of future reproductive impairment

Brougham et al 2012 JCE&M

AMH profiles in the oncology patient

Pretreatment anti-Müllerian hormone predicts for loss of ovarian function after chemotherapy for early breast cancer.

Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation

W Hamish B Wallace, Alice Grove Smith, Thomas W Kelsey, Angela E Edgar, Richard A Anderson

Lancet Oncol 2014; 15: 1129-36

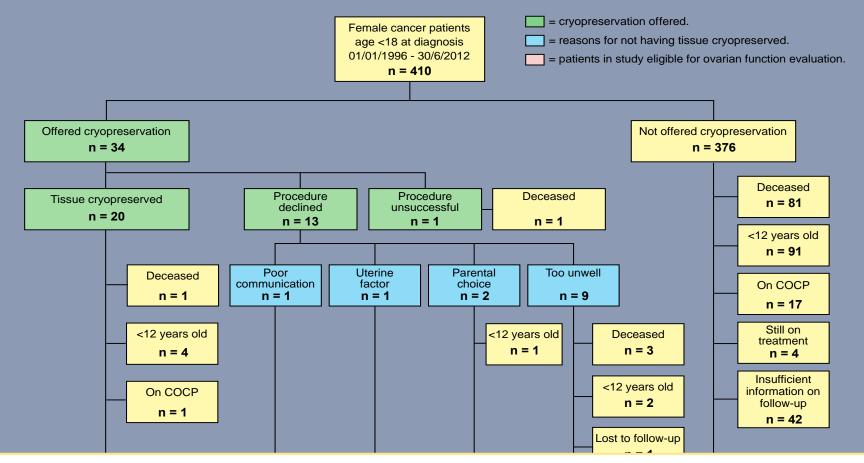
Edinburgh experience in children (< 18 yrs) 1996-2012

Panel 2: The Edinburgh Selection Criteria for gonadal tissue cryopreservation

These criteria were established with ethics committee review and approval because they refer to experimental procedures, and should be regarded as a starting point for future discussion, research, and refinement.

Female patients¹¹²

- Age younger than 35 years
- No previous chemotherapy or radiotherapy if aged 15 years or older at diagnosis, but mild, non-gonadotoxic chemotherapy is acceptable if younger than 15 years
- A realistic chance of 5-year survival
- A high risk of premature ovarian insufficiency (>50%)
- Informed consent (parent and, when possible, patient)
- Negative HIV, syphilis, and hepatitis serology
- Not pregnant and no existing children

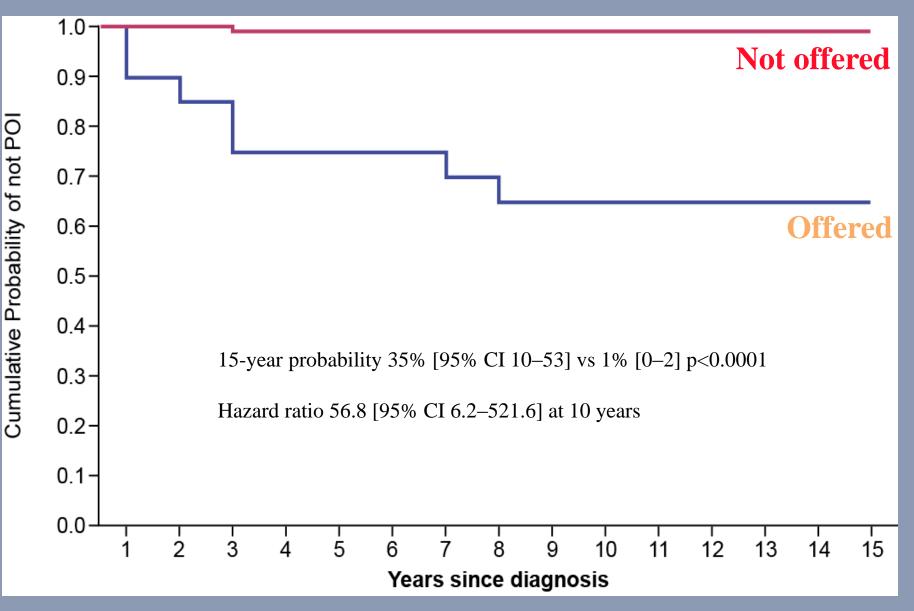

Male patients

- Age 0–16 years
- A high risk of infertility (>80%)
- Unable to produce a semen sample by masturbation
- No clinically significant pre-existing testicular disease (eg, cryptorchidism)
- Informed consent (parent and, when possible, patient)
- Negative HIV, syphilis, and hepatitis serology

Anderson RA...Wallace WH. Lancet Diabetes Endocrinol. 2015

Patient No.	Diagnosis	Age at cryopreservation (years)	Method of ovarian tissue collection	Complications from procedure	Duration since cryopreservation (years)	Age at last assessment (years)	Current Ovarian Function
1	Hodgkin's Lymphoma"	14.9	Laparoscopic Cortical Strip	None	15.8	30.2	Not POI
2	Ewing's Sarcoma (pubic bone)	14.9	Laparoscopic Cortical Strip	None	16.6	25.6	POI (+1 child)
3	Sacral Ependymoma	113	Laparoscopic Cortical Strip	None	15.8	24.5	Not POI
4	Hodgkin's Lymphoma	13.7	Laparoscopic Cortical Strip	None	15.6	28.9	Not POI
5	Hodgkin's Lymphoma	11.0	Laparoscopic Cortical Strip	None	14.7		On COCP
6	Chronic Granulocytic Leukaemia	9.9	Laparoscopic Cortical Strip	None	12.2	21.7	Not POI
7	Rhabdomposarcoma	5.3	Laparoscopic Cortical Strip	None	8.2	13.1	POI
8	Ewing's Sarcoma (pelvic)	9.8	Laparoscopic Cortical Strip	None	6.7	15.6	POI
9	Uterine Cervix Rhabdomposarcoma*	16.4	Laparoscopic Cortical Strip	None	5.1	17.5	Not POI
10	Hodgkin's Lymphoma ⁰	14.0	Laparoscopic Cortical Strip	None	3.2	17.2	POI
11	Abdominal Embryonal Rhabdomyosarcoma	7.9	Laparoscopic Cortical Strip	None			Deceased
12	Ewing's Sarcoma	12.1	Laparoscopic Cortical Stript	None	3.9	15.2	POI
13	Hodgkin's Lymphoma	12.7	Laparoscopic Cortical Strip	None	3.3	14.3	POI
14	Metastatic Medulloblastema	8.1	Laparoscopic Cortical Strip	None	2.9		Not assessed
15	Hodgkin's Lymphoma	15.2	Laparoscopic Cortical Strip	None	1.9	16.9	Not POI
16	Alveolar Rhabdomyosarcoma	10.5	Laparoscopic Cortical Strip	None	1.4		Not assessed
17	Embryonal Rhabdomyosarroma	3.0	Oophorectomy	None	1.4		Not assessed
18	Ewing's Sarcoma	12.0	Laparoscopic Cortical Strip	None	1.4	13.5	Not POI
19	Undifferentiated Sarcoma	12.3	Laparoscopic Cortical Strip†	None	1.0	13.4	Not POI
20	Wilm's Tumour	12	Oophorectomy	None	0.6		Not assessed

15 year, population-based analysis of criteria for ovarian cryopreservation



Do the 'Offered' group have a higher prevalence of POI?

n = 14

n = 141

Cumulative incidence of POI

Wallace WH et al., 2014 Lancet Oncology

Conclusion

Ovarian cryopreservation was offered to 9% of our patients, and performed in 5%

The procedure was safe and without complications No patients have asked for re-implantation of their tissue – to date

All patients who have thus far developed premature ovarian insufficiency were identified except one patient

The Edinburgh Selection Criteria have proved to be helpful in selecting those patients at highest risk of POI

Challenges

Provide fertility counseling to all young patients with cancer

Cryopreserve ovarian and pre-pubertal testicular tissue from the right (high risk) patients

Define the success rate of the procedures

Develop IVG/M as a safe alternative to re-implantation through basic research

Edinburgh Fertility Preservation

www.ed.ac.uk/Edinburgh-fertility-preservation

Acknowledgements

Richard Anderson David T Baird Tom Kelsey Evelyn Telfer Marie McLaughlan Alice Grove Smith George Galea

Rod Mitchell Louise Bath Chris Kelnar Angela Edgar Mark Brougham Fraser Munro

どうもありがとうございます Domo arigatou gozaimasu

